BlochSolverのパルスシーケンスは,PSDKという開発ツールを使って書くことができます.
PSDKとは,Python Sequence Development Kitの頭文字で,BlochSolverとのAPI
(Application Program Interface)を用いて,PythonによってMRIのパルスシーケンスを
記述できるようにしたものです.
PSDKでは,パルスシーケンスを,以下のようなブロックの組み合わせで記述します.
このパルスシーケンスは,Pythonで,以下のように記述することができます.
from psdk import * import numpy as np gamma = 42.57747892 # [MHz/T] TR = 400.0e+3 # [us] TE = 6.0e+3 # [us] NR = 256 # Number of readout points NPE1 = 128 # Number of 1st phase encoding fov = [256.0, 256.0, 128.0] # [mm] dwell_time = 10.0 # [us] slice_width = 5.0 # [mm] gx_value = 1e+6 / (dwell_time * gamma * fov[0]) # [mT/m] gy_value = 2e+6 / (dwell_time * gamma * fov[1]) * NPE1 / NR # [mT/m] gz_value = 1.25 / (slice_width * 1.0e-3) / gamma # [mT/m] gx_rise_time = 300.0 # [us] gy_rise_time = 300.0 # [us] gz_rise_time = 300.0 # [us] ex_pulse_width = 3200.0 # [us] excitation_pulse_flip_angle = 60.0 # [degree] def sinc_with_hamming(flip_angle, pulse_width, points, *, min=-2.0*np.pi, max=2.0*np.pi): x0 = np.arange(min, max, (max - min) / points) x1 = x0 + (max - min) / points y = (np.sinc(x0 / np.pi) + np.sinc(x1 / np.pi)) * 0.5 * np.hamming(points) return flip_angle * y * points / (y.sum() * pulse_width * 360.0e-6 * gamma) with Sequence('2D GradientEcho'): with Block('Excitation', ex_pulse_width + 2.0*gz_rise_time): GZ(0.0, gz_value, gz_rise_time) RF(gz_rise_time, sinc_with_hamming(excitation_pulse_flip_angle, ex_pulse_width, 160), ex_pulse_width / 160) GZ(ex_pulse_width + gz_rise_time, 0.0, gz_rise_time) with Block('PhaseEncoding', NR // 2 * dwell_time + gx_rise_time * 2.5): GX(0.0, -gx_value, gx_rise_time) GY(0.0, ([gy_value * (i - NPE1 // 2) / NPE1 for i in range(NPE1)], ['PE1']), gy_rise_time) GY(NR // 2 * dwell_time, 0.0, gy_rise_time) GX(NR // 2 * dwell_time + gx_rise_time * 0.5, gx_value, gx_rise_time * 2.0) GZ(0.0, -gz_value, gz_rise_time) GZ(ex_pulse_width * 0.5, 0.0, gz_rise_time) with Block('Readout', NR * dwell_time): AD(0.0, NR, dwell_time) with Block('Rewinding', NR // 2 * dwell_time + gx_rise_time * 2.5): GY(gx_rise_time * 2.5 - gy_rise_time, ([gy_value * (NPE1 // 2 - i) / NPE1 for i in range(NPE1)], ['PE1']), gy_rise_time) GX(NR // 2 * dwell_time + gx_rise_time * 2.5 - gx_rise_time, 0.0, gx_rise_time) GY(NR // 2 * dwell_time + gx_rise_time * 2.5 - gy_rise_time, 0.0, gy_rise_time) with Main(): with Loop('PE1', NPE1): BlockRef('Excitation') WaitUntil(TE + ex_pulse_width * 0.5 + gz_rise_time - NR // 2 * 2 * dwell_time - gx_rise_time * 2.5) BlockRef('PhaseEncoding') BlockRef('Readout') BlockRef('Rewinding') WaitUntil(TR)
他のパルスシーケンス例は,BlochSolverのwebsiteに掲載してあります.
The Python PSDK manual is